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Abstract
Online advertising opportunities are bought and sold in au-
tomated auctions driven by real-time bidding. In the case of
contextual advertising, the size of a bid is informed by the
media context in which the ad will be displayed. In contrast
to personalised advertising, contextual advertising is better
aligned with privacy acts such as GDPR and CCPA. We inves-
tigate how reinforcement learning with human feedback can
help optimise contextual advertising under budget constraints.
We propose a dynamic epsilon-greedy algorithm that consid-
ers the rate of budget consumption during a finite transaction
time. The goal is to maximise long-term rewards in a sus-
tainable manner. Our comparative evaluation of fundamental
reinforcement learning algorithms on real data suggests that
the approach is feasible and effective.

CCS Concepts
• Computing methodologies → Reinforcement learning; • In-
formation systems → Computational advertising; Recommender
systems.

Keywords
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1 Introduction
In the context of online advertising, an impression is an oppor-
tunity to show an ad to a user. The vast majority of all impres-
sions are sold to advertisers or their intermediates through a
mode of automated auctioning known as real-time bidding
(RTB). This allows for allocation management and placement
of ads with minimal human mediation [9]. The basic RTB inter-
action scheme looks as follows: When a user visits a webpage,
the publishers controlling the page send a bid request through
the supply-side platform to an ad exchange. In response, one
or more demand-side platforms bid on behalf of different ad-
vertisers. Ideally, an optimal bidding strategy uses a small
amount of budget to bid on the most valuable impressions
and the values of the impressions often hinge on the personal
information of the user, which helps advertisers effectively
identify their target audience.
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With the enactment of a series of data protection policies
such as the California Consumer Privacy Act [1] and the Gen-
eral Data Protection Regulation (GDPR) [3], people’s aware-
ness of their online privacy is increasing. Data platforms must
now explicitly ask for user’s consent to collect personal infor-
mation and track their activities. However, since it is impossi-
ble to predict who will win the impressions in advance, the
users cannot be given a complete picture of how their data will
ultimately be used [9]. An alternative solution is contextual
advertising, which does not depend on private data. Instead,
the value of an impression is derived from the media context
in which the winning ad will appear. The assessment of the
context can, for example, be based on the degree of topical
congruence between the ad and the context. By studying the
leverage of the contextual features under budget constraints,
an effective and sustainable advertising strategy can be found.

RTB optimisation is a central topic in advertising litera-
ture. To maximise the impact of advertising within budget
constraints, accurately predicting click-through rates (CTR)
is crucial. Previous studies have largely treated CTR predic-
tion as a static problem and resulted in algorithms such as
LIN [7] and ORTB [11] which use linear and nonlinear regres-
sion, respectively. There have also been attempts at combining
neural networks and factorisation machines to improve CTR
prediction [4, 5]. In real life, the processes of recommending
and bidding on advertisements are all dynamic in nature. For
this reason, RTB is more accurately modelled as a dynamic
optimisation problem. The algorithms RLB [2] and DRLB [10]
aim to address such dynamic bidding problems with budget
constraints. While DRLB addresses the limitation of RLB’s
model-based approach, making it more applicable to real-
world scenarios using Deep Q-Network, the fixed set of bid
scaling parameters that spans its action space still restricts its
adaptability. Therefore, we reframe RTB as a dynamic optimi-
sation problem and train a bidding agent to spend a limited
budget as effectively as possible, to maximise long-term re-
turns in a more sustainable manner.

This paper explores the application of reinforcement learn-
ing to contextual advertising with budget constraints. The
main contributions are: (1) A dynamic epsilon-greedy rein-
forcement learning mechanism that adaptively adjusts the rate
of advertising spend and maximises long-term rewards. (2) Re-
alistic parameter values, derived from real-world data, includ-
ing costs and rewards. (3) Offline evaluations on real-world
data, under a holistic simulation workflow that combines RTB,
contextual advertising, and reinforcement learning.
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Figure 1: The interaction process revolves around the docu-
ment, user, and agent models (peach-coloured boxes).

2 Method
In our experiments, we use real-world data to simulate RTB
auctions. The dataset consists of pairs of impressions and
information about whether the user clicked the ad, i.e., the
ground truth that the agent is trying to predict. To train the
agent, it is shown the impression part of one data item at a time
and has to decide whether or not to bid. It bases its decision
on contextual features of the impression, as well as on prior
knowledge from previous attempts at bidding. If it chooses to
bid and, according to the historical data, the user clicked on
the ad, then it receives a positive reward. This bidding process
is then repeated until the agent has depleted its budget, or a
maximum number of bidding opportunities have been offered.
This means that the agent needs to assess not only the value
of the impression currently at hand, but also how to maximise
the cumulative return of the entire episode with a limited
budget. To this end, it must ration its budget over time, rather
than bidding on every opportunity which would exhaust the
budget prematurely, or being too conservative and eventually
running out of bidding opportunities. This reflects real-world
applications, where campaigns are set to run over periods of
days, weeks, or even months, so it is not desirable that the
agent spends its entire budget in the first few minutes.

2.1 Interaction Framework
There are three main components in our simulated bidding
process, inspired by RecSim [6]: a document model, a user
model, and an agent model. The agent receives a stream of bid
requests, each of them generated by sampling the document
model to retrieve a candidate advertisement characterised by
some contextual feature. For each such document it decides
whether or not to bid. If it decides to bid, it is informed if
the user clicks on the ad. The agent then computes its gains
and losses and updates its bidding strategy. The interaction is
illustrated in Figure 1. The training data consists of recorded
RTB auctions of individual impressions1, aggregated from
multiple US publisher sites in the period June 14 – 28, 2016.
Each impression is represented by a reference ID, a topic ID,
and a binary user response: 1 means that they clicked, and 0
that they did not.

1https://www.kaggle.com/competitions/outbrain-click-prediction/data

2.2 Optimisation Task
We model the interaction between the agent and the external
environment (that is, the user model and the document model)
at each time step as a Markov Decision Process (MDP). We de-
note by at the bidding action taken by the agent at time step t,
by st the state of the environment at that time, and by rt+1
the immediate reward received at time step t + 1. Each time
an agent makes a bidding decision, it triggers a subsequent
change in the environment state, and the updated state is eval-
uated by the agent in preparation for the next time step. In
our simulated bidding process, each episode is an ordered se-
quence of several such interactions. We thus obtain the follow-
ing sequential trajectory at the end of an episode with t time
steps: s0, a0, r1, s1, a1, r2, . . . , st−1, at−1, rt. The goal of the
agent is to maximise the cumulative return G = Σi∈{1,...,t}rt
under a constrained budget. The central concepts in the cho-
sen approach are listed below, followed by an explanation of
our choice of parameter values.

• A state is a tuple s = ⟨tpc, b⟩, consisting of contextual
features that describe the essential information of the
external environment, where tpc is a topic ID of the doc-
ument and b is a figure denoting the remaining budget.
The total budget for each episode in the experiments
is $120, and if the agent chooses to bid, then a bidding
price of $1.5 is deduced from the available budget only
if it receives a click.

• An action at ∈ A = {0, 1} represents the agent’s bid-
ding decision at time step t.

• A reward rt from the transition st → st+1. In the experi-
ments, if the agent chooses to bid and receives a click
from the user, then the reward is $5. In all other cases,
there is no reward.

• The episode length is a non-zero integer parameter t.
In the experiments presented here, we let t = 500. In
the extreme scenario where the agent chooses to bid on
almost every impression, the episode will end around
t = 80 when the budget is exhausted. However, we
would like to encourage the agent to be more selective
with its bids, and learn how to identify impressions that
are likely to lead to clicks.

To make our experiments as realistic as possible, we derive
key parameters from Amazon’s report on Advertising Cost
of Sale (ACoS)2. ACoS is a measure of the ratio of advertising
expenditure to revenue and should be around 20% – 30%,
calculated by:

ACoS =
TotalAdSpend

TotalSales
=

CPC
UnitPrice × CVR

Here, CVR denotes the conversion rate, that is, the relative
proportion of users that click on an ad that also take some
desired action when arriving at the landing site. The Cost Per
Click (CPC) is generally 70 – 150 cents, and CVR should be in
the range of 2% – 8%.

2https://advertising.amazon.com/library/guides/acos-advertising-cost-of-
sales

https://www.kaggle.com/competitions/outbrain-click-prediction/data
https://advertising.amazon.com/library/guides/acos-advertising-cost-of-sales
https://advertising.amazon.com/library/guides/acos-advertising-cost-of-sales
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2.3 Learning Algorithms
We compare two fundamental classes of RL algorithms: the
Monte Carlo (MC) family and the Temporal Difference Learn-
ing (TD) family. They are represented by first-visit MC, every-
visit MC, Q-Learning, and SARSA [8]. As previously men-
tioned, the agent evaluates whether to bid based on the state,
and the different actions result in different feedback. Thus, for
each state-action pair, we obtain a score to measure its value,
denoted as q⟨st, at⟩. Once our agent has taken the action at
at the state st and received a reward, the value q⟨st, at⟩ can
be calculated based on the Bellman equation [8] and used for
future policy guidance.

One of the most important problems in reinforcement learn-
ing is to balance exploration and exploitation. Exploitation
is when the agent selects the option it expects to yield the
highest reward based on the information it has collected thus
far. Exploration, on the other hand, is when the agent ignores
previous knowledge to investigate unknown (and potentially
highly rewarding) options. In the real world, users are not
a heterogeneous group, and even individual users change
their behaviours over time and in response to external fac-
tors. So, if the agent is only guided by prior experiences, it is
likely to overlook opportunities for higher rewards and be-
come trapped in sub-optimal choices. In contrast, if the agent
varies its interaction with the environment, it gains a more
comprehensive understanding of the underlying dynamics.

As previously mentioned, we want the agent to economise
with its budget throughout the episode. So, for the agent to
better maximise the benefit in a changing environment, we
add a ratio mt = BudgetLeft/TimeLeft to dynamically adjust
the intensity of exploration, making it reflect the rate at which
the budget is spent. In this way, if there is an ample budget
left and the episode is almost finished, then the agent can
boldly explore all opportunities. Conversely, if the budget is
consumed too fast, we can reduce ϵ to throttle the rate of explo-
ration, so that the agent makes greedy choices according to the
previously obtained information. However, it is not practical
to use this ratio directly as a value of ϵ, because this ratio obeys
a right-skewed distribution, is unevenly distributed, and most
of the values are outside the [0, 1] interval. Therefore, we apply
a log transformation and min-max normalisation of the ratio
so that the parameter is more uniformly distributed within the
interval [0, 1], denoted as mt′. Figure 2 shows the comparison
of this ratio before and after transformation.

Intuitively, the strategy for dealing with the exploration
and exploitation trade-off is as follows:

at =

{
argmaxa q(st, a) with probability 1 − mt′,
random a with probability mt′.

3 Results and Discussion
This section reports on the simulated interactions results3. We
run 1 000 episodes for each algorithm to train our agent. There
are 500 time steps, i.e. 500 bidding interactions, per episode,
and each episode starts with a total budget of $120.
3The experiment code is available at https://github.com/JingWen17/Budget-
Constrained_RTB_Optimisation

Figure 2: The scatter plot within the grid visualises the cor-
relation between the values of mt before and after log trans-
formation and min-max normalisation (mt′). The marginal
plots represent their respective distributions. The distribu-
tion of mt at the top has a noticeable left skew, while the
distribution of mt′ is closer to a normal distribution.

Figure 3 shows the cumulative rewards obtained by the dif-
ferent algorithms. We begin by noting that the returns increase
as more episodes are trained, which indicates that our agent
is constantly improving its ability to recognise promising im-
pressions. Secondly, the TD methods (Q-Learning and SARSA)
perform better than the MC methods. This is likely because the
TD approaches update their policies much faster, whereas the
MC approaches need to wait until the end of each episode and
then calculate the value of each encounter by reviewing the
interaction trajectory. The most obvious example is that in a
few beginning episodes, the agent is likely to be in a situation
where nothing is known about most states, because it has not
had enough opportunities to interact with the environment.
At this point, the agent makes decisions primarily through
random selection. If it happens to receive positive feedback in
an interaction, the MC agent can only update its policy once
the entire episode is finished. If this feedback points it in the
wrong direction, then the MC agent may have to go through
many more episodes to make up for the mistake. This is not
the case with the TD approach, where the TD agent does not
have to wait until the end of an episode before calibrating its
knowledge of the environment, but instead adjusts its policy
at every time step of the interaction.

Next, we compare our proposed algorithm with baselines
in a dynamic environment, where the baseline Q-Learning
and Sarsa algorithms consistently choose actions that yield the
highest reward based on the estimated q⟨st, at⟩, focusing solely
on exploitation. In this experiment, the reward associated with
a specific topic varies over time, and reaches its highest values
towards the end of an episode, when the agent’s budget might
be running low. This reflects real-world fluctuations linked
to, for example, time of day, season, and global events. The
results are reported in Figure 4.

https://github.com/JingWen17/Budget-Constrained_RTB_Optimisation
https://github.com/JingWen17/Budget-Constrained_RTB_Optimisation
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Figure 3: The total returns obtained using different algo-
rithms with a changing epsilon (mt’). The x-axis and y-axis
represent the count and average total return, respectively,
per 10 episodes. The initial epsilon for all the algorithms is
0.1 and the learning rate for Q-Learning and SARSA is 0.25.

(a) (b)

Figure 4: Comparisons between the performances of Q-
learning and Sarsa, both with and without the changing
epsilon (mt’) in a dynamic environment. (a): The average
total return per 100 episodes. (b): The ACoS calculated based
on the given formulation in Section 2.2.

By incorporating our proposed dynamic epsilon, both Q-
Learning and Sarsa achieve higher total returns compared to
the baseline algorithms. The dynamic epsilon stimulates ex-
ploration while the learner has a sufficient budget left to lever-
age new findings. In contrast, the baseline algorithms always
take the currently optimal action. In addition, Q-Learning
and Sarsa with mt′ prove to be more effective and sustainable
than the baselines. Figure 4(b) shows that four algorithms
all achieve a good ACoS of around 24% to 26%. However,
our proposed algorithms stand out by having a lower ACoS,
which is valuable when budgets are limited.

In summary, our findings indicate that compared to MC
methods, Q-Learning and SARSA are better able to adapt
their strategies through interactive learning. In addition, our
proposed dynamic epsilon method outperforms the baseline
algorithms by more efficiently and sustainably learning in a
dynamic environment. In the specific problem we simulated,
which is characterised by a relatively small state space, limited
unexpected events, and constrained time and budget, SARSA
exhibited greater stability overall.

4 Conclusion
We model contextual RTB as a dynamic interaction process un-
der budget constraints, define a suitable set of parameters to
reflect real-world applications of contextual advertising, pro-
pose a dynamic epsilon-greedy algorithm to maximise long-
term rewards sustainably, and compare the performance of dif-
ferent model-free reinforcement learning methods. Through
experiments on real-world data, we can find that Q-Learning
and SARSA outperform MC-based approaches to the prob-
lem. In addition, our proposed dynamic epsilon approach
performs better in a changing environment. Future work in-
cludes the exploration of more advanced contextual features,
for example, the semantic congruence between webpages and
ads. This may involve further studies assessing the state-of-
the-art text retrieval techniques and similarity measurement
methods. Furthermore, we will also extend our bidding exper-
iment to include several competing bidders.
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