
For submission to the Journal of Automata, Languages and Combinatorics
Created on September 12, 2025

REINFORCEMENT LEARNING OF
FINITE-STATE STRING TRANSDUCTIONS

Johanna Björklund Jingwen Cai Anna Jonsson

Dept. Computing Science, Umeå University
90187 Umeå, Sweden

{johanna,jingwenc,aj}@cs.umu.se

ABSTRACT
Finite state transducers (FSTs) are a valuable tool in data processing systems, where
they are used to realise string-to-string transductions. We consider the problem of
inferring transductions representable by FSTs through reinforcement learning. In this
machine-learning paradigm, a learning algorithm repeatedly interacts with an environ-
ment by performing one out of a fixed set of candidate actions. Each action taken yields
a reward, the size of which depends on the environment’s current state, and causes the
environment to change into a new state. The algorithm’s objective is to maximise the
accumulated reward. In the setting explored here, the environment consists of the next
symbol in the input string to be rewritten and a transducer state. An action consists
in choosing the symbol to output next, and the transducer state to shift into, thus
causing a change in the environment. We propose a learning algorithm that starts out
from a singleton set of states, and every time the learning rate stagnates, splits a state
into two. For the split, it chooses a state that has been visited often, but despite this
provides little information about how to maximise the reward. We evaluate the algo-
rithm through empirical experiments, and the results suggest that it is robust enough
to handle situations where the target transduction changes during the learning process.

Keywords: string transducers, reinforcement learning, Q-learning

1. Introduction

We study reinforcement learning of (deterministic and total) string-to-string transduc-
tions, represented by finite-state string transducers (FST). This is a computational
device for expressing functions on strings, which despite its simplicity has a range
of applications. For example, FSTs have been applied to transliteration, inflection
generation, cognate project and phoneme-to-grapheme conversion in machine trans-
lation [11, 17], and offer an efficient analysis tool in speech processing [24]. Prior

The authors are given in alphabetical order. The project is supported by the Swedish Research
Council under Grant Number 2020-03852, by the Wallenberg AI, Autonomous Systems and Software
Program (WASP) and WASP-HS.

Johanna Björklund: 0000-0003-0596-627X, Jingwen Cai: 0009-0004-0580-6270, Anna Jonsson:
0000-0002-9873-4170

https://orcid.org/0000-0003-0596-627X
https://orcid.org/0009-0004-0580-6270
https://orcid.org/0000-0002-9873-4170
https://orcid.org/0000-0003-0596-627X
https://orcid.org/0009-0004-0580-6270
https://orcid.org/0000-0002-9873-4170

2 J. Björklund, J. Cai and A. Jonsson

research has emphasised three areas: (i) grammatical inference within the context
of active learning [4, 1], (ii) distillation of finite automata from trained neural net-
works [28, 8], and (iii) supervised learning of transition functions represented by SVM
classifiers [18, 19] or LSTMs [30, 9, 33]. Our work complements these endeavours by
exploring the application of reinforcement learning to finite-state transducers [25, 14].
Finite-state transducers (FSTs) [6, 3] are essentially finite state automata [22], where
the transitions in addition to carrying input symbols also carry output symbols. This
feature enables these automata to generate an output string in response to an input
string, thus realising string-to-string transductions.

Reinforcement learning (RL) shares similarities with active learning in that the
learning algorithm can influence what training data it will receive [12]. The learning
framework is typically modelled as a Markov decision process [2], described by (i) a
potentially infinite set of environment states, (ii) a set of actions that the learner may
take, (iii) a probability distribution describing the impact of the learner’s actions on
the environment states, and (iv) a reward function that maps each combination of
state and action to a weight. The learning process unfolds through discrete time steps,
divided into finite episodes. At each time step, the learner selects an action based
on the current state of the environment, resulting in a reward and a change in the
environment’s state. The learner’s objective is to optimise its accumulated reward,
meaning it must weigh the value of discovering new information that may increase
future rewards against that of levering existing knowledge for more immediate profit.

In our setting, the learner acquires a target transduction T through a sequence of
episodes. In each episode, it is given an input string u and asked to produce T (u) by
iterating over the symbols of u – one at a time – and for each symbol generating a
suitable output. We consider the transduction T to have been successfully inferred
when the learner has improved to the point where it can make an uninterrupted
series of N perfect translations from a given input string to the correct output string
(where N is an integer-valued hyperparameter of the learning algorithm). We do not
require that the resulting FST is in some sense canonical, though in our experiments,
the learner always found an FST of minimal size.

To guide the transduction, the agent has access to a set of transducer states P ,
which will eventually come to make up the states of the inferred FST. It is common
in reinforcement learning to view all input on which the agent acts as part of the
environment [29]. For example, in an RL model of a robot that learns to return
to its charging station every time its battery runs low, the battery status would be
treated as part of the environment, even though it is inside the robot. The advantage
of attributing all statefulness to the environment and treating the agent as a purely
reactive entity, is that it isolates the problem of choosing the optimal strategy (which
is the agent’s responsibility) from modelling the rules that govern cause and effect
(which is what the environment is used for). In the upcoming pages, we keep with
this convention as it makes it easier to apply standard RL algorithms.

The reader should thus be prepared that to our proposed FST learner, the set of
states P of the FST that it is constructing is considered to be part of the environment,
even though it is an integral part of the inferred device and something that the learner
can manipulate directly. We consider both the case where P is fixed from start, and

Reinforcement learning of FSTs 3

when it is gradually built up during learning. At each step of the learning process,
the environment state consists of the symbol α in u to process next and a transducer
state q′ in P . We pause here to underline the distinction between the transducer
states P , and the environment states, which are tuples consisting of an input symbol
and a transducer state in P . The motivation for having two types of states is that
the former is needed to infer an FST, but the latter is needed to represent also the
input symbols as part of the environment. The choice of naming is not ideal, but
it is respects the convention in RL to refer to each successive configuration of the
environment as a state.

For the learner, an action consists in choosing a string v to output and a transducer
state q in P to move to. The reward is based on the Levenshtein distance [15]
between the output generated by the learner and the correct output according to T .
In other words, it is (inversely) proportionate to the minimal number of one-symbol
insertions, deletions, and replacements required to turn one string into the other. This
reward function is only meaningful because the target transduction is assumed to be
deterministic and total, that is, there is exactly one correct output for each input. In
Section 5 we outline ideas for how the reward function can be varied to accommodate
probabilistic transductions.

Also when it comes to the timing and distribution of the reward there are different
design options: We may either give the learner a positive reward at each time step,
or give it neutral rewards until the very end of an episode, but then provide it with
feedback that reflects the entire output string. As we shall see, the former method
often accelerates the learning process, but can cause the learner to make mistakes
that are time-consuming to correct, thereby delaying or even preventing convergence.

As previously mentioned, the agent is provided with the input strings to translate.
This means that it has limited freedom to collect training data, but it still has some
influence as it can choose how to react to each input symbol and observe the effects of
its actions. The setting has similarities to the applications of RL to the game of Go:
the agent cannot control its opponents moves, but it can decide how to respond, and
at the end of the game it receives a strong feedback signal on its performance [26].

We base our learning algorithm on Q-learning [31] which is a standard RL approach.
Q-learning leverages the observation that the value val(s, a) of transitioning from an
environment state s by taking an action a can be approximated as the direct reward
incurred by a, plus the maximum value that can be obtained by then continuing
from the resulting environment state s′. The result is a recursive function, where
the current estimate of val(s, a) is updated based on estimates of the form val(s′, b)
where b is some applicable action at environment state s′. This refinement process
continues until value function val stabilises, at which point it can be discretised to
obtain a transition function for an FST.

A drawback of the Q-learning approach is that it supposes that we know the ap-
propriate number of transducer states in advance. If we give it too few transducer
states to work with, then the learner will be unable to deduce the target transduction.
Conversely, if we give it too many, then the learning process will take a prohibitively
long time to converge. To address this challenge, we employ a novel state-splitting
method, which operates as follows: Initially, the learner is allowed to explore the envi-

4 J. Björklund, J. Cai and A. Jonsson

ronment for a limited period of time. Afterwards, the learning progress is periodically
evaluated to ensure that some improvement has occurred since the last evaluation. If
no progress is evident, we select a state that the learner has frequently used but which
still possesses little predictive value for the eventual reward. This state is then split
into two. The rationale behind this approach is that if there is a sufficient number of
states, then the learner should eventually make progress. If this is not the case, then
additional states are required. Furthermore, if the learner frequently passes through
a state q but lacks an effective strategy for maximising the reward from that point,
it is likely because there are input strings u and u′ that both reach this state but be-
long to different congruence classes with respect to T , and hence need to be treated
differently by the learner (and eventually also the inferred transducer). By splitting
the state q into two, the learner gains the opportunity to adapt its behaviour to these
distinct cases.

A strength of reinforcement learning is that it makes it possible to model dynamic
environments, where the state behaviour changes over time. This can for instance
happen when we are trying to predict the prices of auctioned advertising space in
marketing, which changes based on season and market demand. We may therefore ask
how a Q-based learner is affected when the target transduction T is modified during
the learning process. For instance, T might initially replace every second a in its input
strings with b, but after a certain number of episodes, it may change this pattern
to only replace a every third time. In theory, the combination of a small amount
of random exploration and the above-mentioned state-splitting approach should be
able to accommodate such a moving target, and in Section 4.7 we conduct a simple
experiment to test the idea.

In summary, we study reinforcement learning for string-to-string transductions.
Our primary research question concerns the adaption of Q-learning to FST inference,
while the secondary question revolves around the effectiveness of this approach in the
face of a dynamically changing target transduction. The main contributions are the
formalisation of FST inference within the context of reinforcement learning, and the
provision of an experimental framework for assessing its effectiveness.

1.1. Related work

There is a rich literature on grammatical inference and machine learning of finite-
state devices in general, and to some extent also of transducers. A pioneer in the field
is Eisner [7] who presented an expectation-maximisation (EM) algorithm to train
weighted finite-state transducers from data. The algorithm estimates the transition
distributions based on observed input and output strings through the expectation
step, and then updates the distribution parameters by maximising the expected log-
likelihood through the maximisation step. Local convergence is achieved through
repeated iterations of the expectation and maximisation steps.

The EM approach bears a similarity to Q-learning in the iterative execution-update
process used to approximate the training goal, but differs in how information about
the target transduction is presented to the learner: In Q-learning, the learner receives
a potentially infinite sequence of input strings together with feedback on its attempts

Reinforcement learning of FSTs 5

at generating matching output strings, but it is never allowed to inspect the correct
output strings directly. In the expectation-maximisation approach on the other hand,
the learning algorithm is provided with a finite set of input-output pairs, but no
additional feedback is given.

A step closer to reinforcement learning, we have algorithms for active learning of
transducers. An early example is the work by Carme et al. [4] that aims to infer node-
selecting transducers, which are an extension of step-wise tree automata [16]. Carme et
al. show that node-selecting transducers can be learnt by querying an oracle capable
of (i) correcting node selections made with respect to individual input trees, and
(ii) giving counterexamples to the hypothesis that a given node-selecting transducer
represents the target transduction.

Another work in this vein is that by Akram et al. [1] which applies active learning to
probabilistic finite-state transducers. They propose an algorithm which learns the tar-
get transduction from two data sources: a finite corpus of sample input-output pairs,
and an oracle with a fixed set of capabilities. To ensure the algorithm’s effectiveness,
the corpus must constitute a characteristic sample for the target transduction T . In
essence, this implies that every state and edge in a minimal transducer for T should
be represented in the sample, and there must be sufficient contextual information for
the learner to distinguish between strings that are not equivalent with respect to T .
In addition to inspecting the corpus, the learner can query the oracle for the total
probability distribution assigned to strings with a given prefix w through an extended
prefix language query. We return in Section 5 to discuss how an approximate version
of this algorithm could be made to work in the current RL setting.

1.2. Outline

This paper is organised as follows. Section 2 recalls relevant concepts from formal
language theory and statistics. The problem of learning string transductions as an
instance of reinforcement learning is formulated in Section 3, and in relation to that,
a basic learning algorithm is proposed. In Section 4, we evaluate and further develop
this algorithm through practical experiments. Finally, Section 5 concludes the article
by outlining directions for future work.

2. Preliminaries

The set of natural numbers (excluding zero) is denoted by N and the set of non-
negative reals by R≥0. The size of a set S is denoted by |S|, and the empty set is
written ∅. An alphabet Σ is a finite nonempty set. A string is an ordered sequence of
zero or more symbols from Σ. The set of all strings over Σ is denoted by Σ∗, and the
empty string is written ε. The length of a string u ∈ Σ∗ is written |u|, and we denote
by u[i], where i ∈ N and 1 ≤ i ≤ |u|, the ith symbol of u.

Let A be a finite set. A probability distribution is a mapping p : A → R≥0 such
that for all a ∈ A, 0 ≤ p(a) ≤ 1, and

∑
a∈A p(a) = 1. If A is a field and ϕ is a

function over A, we may write Ep[ϕ] for the expected value of ϕ when its arguments
are sampled from A with respect to p.

6 J. Björklund, J. Cai and A. Jonsson

q0start q1

b/b

c/c
a/a

a/a

b/c

c/b

Figure 1: An FST over the alphabets Σ = ∆ = {a, b, c}. The state set is P = {q0, q1},
where q0 is the initial state, and both states are final states (the FST is all-accepting).
There are six transition rules whose effect can be described as follows: Every time
the transducer encounters an a in its input string, it shifts between either faithfully
replicating its input, or replacing b:s with c:s and vice versa.

To ensure that the reward is always well-defined, we restrict ourselves to string
transductions that are total functions on their domains. In other words, for every
input string there is exactly one correct output string. Moreover, we only allow
transductions with bounded size increase to make it easier for the learner to align
input and output strings. This leads us to the following definition:

Definition 1 Finite-State Transducer. An (all-accepting deterministic) finite-
state string transducer (FST) is a tuple M = (Σ, ∆, P, q0, δ) where Σ is an alphabet
of input symbols, ∆ is an alphabet of output symbols, P is a finite set of states, q0 ∈ P
is an initial state, and δ : (P × Σ) 7→ ((∆ ∪ {ε}) × P) is a transition function.

We henceforth refer to all-accepting deterministic finite-state string transducers
simply as ‘transducers’ when there is no risk for confusion.

Let M be an FST and let ρ = ((q′, w), (u, q)) ∈ δ (remember that we can view
every relation, and hence every function, as a set of tuples of input-output pairs).
The source of the transition ρ is src(ρ) = q′, and the target is tar(ρ) = q. The input
string of ρ is inp(ρ) = w and the output string is outp(ρ) = u.

A run π of M is a sequence of transitions π = ρ1 . . . ρk in δ∗ such that src(ρ1) = q0
and tar(ρi) = src(ρi+1) for all i ∈ N such that 1 ≤ i ≤ k − 1. The input and output
strings of π are

inp(π) = inp(ρ1) · · · inp(ρk) and outp(π) = outp(ρ1) · · · outp(ρk) ,

respectively. We denote by runsM (w) the set of all runs π of M such that inp(π) = w.
The transduction computed by M is the mapping Σ∗ → 2∆∗ given by

M(w) =
⋃

π∈runsM (w)

outp(π) . (1)

The transducer is a relabelling if |w| = |u| for every transition ((q′, w), (u, q)) ∈ δ.
It should be clear that a relabelling transducer translates every input string to an
output string of equal length. See Figure 1 for an example of a relabelling transducer.

Reinforcement learning of FSTs 7

3. Reinforcement learning

Reinforcement learning is one of the core paradigms in machine learning, and ad-
dresses the problem of optimising decision-making under dynamically changing con-
ditions. At the centre is a learning algorithm which continually interacts with its
environment in pursuit of some target objective. Initially, its understanding of the
environment is limited. However, through a systematic process of observing and learn-
ing from the consequences of its actions, it gradually refines its ability to determine
the most effective strategy for achieving its objective, and to revise this when the
environment changes. This methodology, often described as a “trial and reward” ap-
proach, thus allows the algorithm to leverage real-time information, and choose those
actions that yield the most rewarding outcomes.

Learner

Environment

Action at at t:
(βt, qt+1)

State st at t:
(αt, qt)

Reward rt+1
at t + 1

Figure 2: The learner’s interaction with
its environment is modelled as a Markov
decision process. Observing a state st

of the environment at time step t, the
learner chooses an action at. The action
yields a reward rt+1 and moves the en-
vironment into state st+1. The reward
provides a feedback signal to the learner
that guides subsequent decisions.

More formally, the learning algorithm
(henceforth, the learner), operates in an
environment represented by a state s.
Learning takes place over one or more
episodes, each consisting of a finite num-
ber of discrete time steps T . At each
time step t ∈ {1, ..., T}, the learner in-
teracts with the environment, where the
current environment’s state information
is represented as st. Based on st, the
learner chooses an action from all avail-
able actions at ∈ A, where A is a fi-
nite discrete action set within our spe-
cific context. This action triggers a re-
ward rt+1 from the environment and
causes it to change to state st+1. The
learner’s objective is to maximise the
cumulative return, which requires it to
recognise and exploit properties of the
unknown reward function.

In our baseline application of RL to the inference of an FST M for a target trans-
duction T , we first choose a set of transducer states P with a designated initial state
q0 ∈ P . Then, for every natural number j = 1, 2, . . ., we generate a string uj ∈ Σ∗

and let wj = T (uj) and vj = ε. At time t ∈ [1, |uj |], the learner observes the en-
vironment state st = (uj [t], qt), where qt ∈ P .1 Based on the environment state, it
chooses as next action a pair (βt, qt+1) ∈ Σ∗ × P and we update vj to vjβt. In return,
the learner receives the reward rt+1. If t < |uj | then this reward is 0, but if t = |uj |
then it is computed based on the Levenshtein distance between the correct output wj

and the output vj produced by the learner. This distance is the minimal number of
single-symbol edits (insertion, deletion, or substitution) required to translate one of
the strings into the other. Given a string w = aw′ ∈ (Σ∗ \{ε}), we denote the symbol

1Recall that the environment states are distinct from the transducer states. To underline this
difference, we denote the environment states by si, i ∈ N, and the transducer states by pi, i ∈ N.

8 J. Björklund, J. Cai and A. Jonsson

a by head(w) and the string w′ by tail(w). More formally, the Levenshtein distance
between w and v is then:

lev(w, v) =



|v| if |w| = 0
|w| if |v| = 0
lev(tail(v), tail(w)) if head(v) = head(w)

1 + min


lev(tail(v), w)
lev(v, tail(w))
lev(tail(v), tail(w))

otherwise

Finally, the reward is defined as the negative logarithm of (lev(wj , vj)+1) to encourage
the learner to emulate the behaviour of T . After the reward has been received, either
we have t = |uj | and the episode ends, or there are still input symbols left to consume
and the environment changes to the state st+1 = (u[t + 1], qt+1). (We note here that
the state qt+1 is the state chosen by the learner as part of its last action, and is not
guaranteed to reflect the correct transition behaviour of some canonical FST for the
target transduction.)

In Section 4.4 we also investigate the scenario where the main reward is distributed
over the individual time steps, and not postponed until the end of the episode.

3.1. Q-learning

As mentioned in the introduction, we design our learning algorithm along the Q-
learning approach. This means that the learner estimates the potential value of
a state-action pair (s, a) as the maximal obtainable accumulated rewards that can
be achieved by reaching the state s and then taking the action a to the end of its
trajectory. The learner systematically records the values of all encountered (s, a)
pairs in a lookup table, where these pairs serve as keys. By consistently selecting
the most valuable action associated with a specific state, the learner can implement
a decision-making policy. During its engagements with the environment, the learner
not only relies on this table to guide its actions but also actively updates it based
on the rewards resulting from those actions. The values thus aid the learner in its
decision-making and evolve according to the feedback received. This interconnect
process progressively brings the stored values closer to the actual values, and in doing
so refines the learner’s understanding of the environment.

Let us now consider how to best represent the environment. If computational
complexity was not an issue, then the learner could in principle index the Q-value
table with all possible combinations of a prefix on an input string (corresponding to
an environment state) and any possible output string (corresponding to an action).
However, since there is no upper bound on the length of these strings, this is not
a feasible way forward. Instead, we consider more compact means of encoding the
input and output strings. The perhaps most obvious choice, given our ambition to
learn finite-state transducers, is to provide a set of states P which the learner can use
to remember key properties of the input string consumed so far, together with the
next symbol in the input string to be consumed. (In Section 4.4, we discuss other

Reinforcement learning of FSTs 9

alternatives.) Given that an action is a pair consisting of the symbol to output, and
the next state to move to, this results in a Q-learning table tab that is a subset of the
set (Σ × P) × ((Σ ∪ {ε}) × P).

Now, let A be the set of all actions, and S be the set of all environment states.
The value of taking an action at ∈ A in state st ∈ S (which in Q-learning is called
the Q-value) is the expected value of the sum of all future rewards received from
time step t + 1 and onward. When formulating this value, it is standard to introduce
a discount factor γ ∈ [0 · · · 1] to express that rewards in the near future are valued
higher than those in the distant future. Moreover, a policy is a family of probability
distributions p = (ps)s∈S where ps : A → R≥0 is the probability distribution for a
particular state s. Intuitively, the policy tells us how likely it is for the learner to take
an action a in a state s. We can now express the value of a state-action (st, at) pair
as follows:

valp(st, at) = Ep[rt+1 + γ · rt+2 + γ2 · rt+3 + . . . + γT −t−1 · rT | st, at] . (2)

Recognising that Equation 2 contains the Q-value equation for (st+1, at+1) as a sub-
term, we can rewrite it as:

valp(st, at) = Ep[rt+1 + γ · valp(st+1, at+1) | st, at] . (3)

Since the value of valp(st+1, at+1) is unknown to the learner, the learner uses its
current estimation tab(st+1, at+1) as replacement when computing Equation 3. As
the learning process continues, the learner must seek to minimise the error err t,
which is given by the difference between the new updated target and the previous
estimation, that is,

err t = rt+1 + γ · tab(st+1, at+1) − tab(st, at) . (4)

A policy p̂ is optimal if, for every state, it always assigns the greatest likelihood to the
action that leads to the greatest possible future reward. The set of optimal policies
for the state share the same optimal action-value function:

val p̂(st, at) = Ep̂[rt+1 + γ · maxat+1val p̂(st+1, at+1) | st, at] . (5)

Based on the above equations, we can derive a recursive update formula, using the
approximation of the optimal action-value function as learning objective:

tab(st, at) := tab(st, at) + α[rt+1 + γ · maxat+1 tab(st+1, at+1) − tab(st, at)] , (6)

where α ∈ (0, 1], is the learning rate, that is, a constant which determines to what
extent the learner adjusts its previous estimation based on err .

Through iterative refinement of the action value function, the learner progressively
brings its estimates closer to the true values. This suggests a greedy strategy, where
the learner consistently selects the highest-valued action in each state. However, for
more effective adaptation to changes in the environment, the learner can be set to
follow an epsilon-greedy strategy. In this approach, with a small probability ϵ ∈ R≥0

10 J. Björklund, J. Cai and A. Jonsson

where 0 ≤ ϵ ≤ 1, the learner deviates from the greedy strategy and instead chooses its
next action randomly. The epsilon-greedy strategy encourages the learner to explore
also high-risk actions, potentially acquiring valuable information which can lead to
greater future rewards. Additionally, it allows the learner to reassess current strategies
and discover new opportunities which may arise due to changes in the environment.
Consequently, the learner’s action selection policy is represented as:

at =
{

argmaxa tab(st, a) with probability 1 − ϵ,

random a with probability ϵ .

4. Experiments

To study the ideas presented in Section 3, we implement a reinforcement learning
algorithm in Python and apply it to infer a series of string transductions. First, we
present the transductions involved and describe how the training data was sampled.
We then continue to detail a simple experiment to give the reader an intuition about
how the various design choices made in the algorithm influence its performance. Fi-
nally, we discuss variations of the reward function and the state space, and also what
happens when the target transduction shifts during the inference process.

4.1. Data sets

To study different properties of the learning algorithm, we define the transductions
presented in Table 1. For each transduction, we create a finite-state transducer and
sample up to 10 000 input-output pairs. Only reverse needs to be treated differently
since it cannot be represented by an FST. For this transduction, we therefore wrote
a simple script to generate a suitable corpus of input-output pairs where the output
is the reverse of the input string. During an experiment on a transduction T , we
repeatedly pick a pair (u, w) from the corpus belonging to T , feed the input string u
to the learner, and then provide it with feedback on its performance by relating its
output string v to the correct output w. Henceforth we refer to w as the target string.

The FST-based sampling was done using the pyfoma library 2 for weighted FSTs.
Since our FSTs are not weighted (or rather, they are weighted over the Boolean
semiring), we set the weights of every transition to 1 so that we can extract a list
of increasingly large input-output pairs. The extracted corpus is sorted according to
the number of rule applications in ascending order, but when training, we randomly
sample pairs.

4.2. Experimental setup

To describe the experimental setup, we take the inference of the transduction c-tail
as an example (see Table 1 for its definition). In each experiment, we train the learner
until it converges to the correct transduction, or an upper limit of N episodes has

2https://github.com/mhulden/pyfoma

https://github.com/mhulden/pyfoma

Reinforcement learning of FSTs 11

Table 1: The transductions used in the experiments. With the exception of Reverse,
all can be represented by an FST, and in these cases we construct a minimal all-
accepting FST for the transduction. The right-most columns indicate whether a trans-
duction is a relabelling, and the minimal number of states needed.

Name Description Relab. States

identity The output string is equal to the input string. ✓ 1
A = ({q0}, {a, b, c}, {a, b, c}, q0, δ, {q0})
δ = {(q0, a, a, q0), (q0, b, b, q0), (q0, c, c, q0)}

b-to-a Every b in the input string is replaced by an a
in the output string.

✓ 1

A = ({q0}, {a, b, c}, {a, b, c}, q0, δ, {q0})
δ = {(q0, a, a, q0), (q0, b, a, q0), (q0, c, c, q0)}

remove-b Every b in the input string is deleted. ✗ 1
A = ({q0}, {a, b, c}, {a, b, c}, δ, q0, {q0})
δ = {(q0, a, a, q0), (q0, b, ε, q0), (q0, c, c, q0)}

c-tail The output string is equal to the input string,
until the first c is encountered. From that
point on, the remainder of the input string is
rewritten to c:s.

✓ 2

A = ({q0, q1}, {a, b, c}, {a, b, c}, q0, δ, {q0, q1})
δ = {(q0, a, a, q0), (q0, b, b, q0), (q0, c, c, q1),(q1, a, c, q1),(q1, b, c, q1),
(q1, c, c, q1)}

abc The output is equal to the input, except when
the substring ‘abc’ is encountered. In these
cases, the c is changed to a b.

✓ 3

A = ({q0, q1, q2}, {a, b, c}, {a, b, c}, q0, δ, {q0, q1, q2})
δ = {(q0, a, a, q1), (q1, b, b, q2),(q2, c, b, q0), (q0, b, b, q0), (q0, c, c, q0),
(q1, a, a, q0), (q1, c, c, q0), (q2, b, b, q0), (q2, a, a, q0)}

n-count Every nth input symbol is replaced by a c in
the output string. The transducer below spec-
ifies 3-count.

✓ n ∈ N

A = ({q0, q1, q2}, {a, b}, {a, b, c}, q0, δ, {q0, q1, q2})
δ = {(q0, a, a, q1), (q1, a, a, q2),(q2, a, c, q0), (q0, b, b, q1), (q1, b, b, q2),
(q2, b, c, q0)}

reverse Output the input string in reverse. This trans-
duction cannot be represented by an FST.

✓ N/A

12 J. Björklund, J. Cai and A. Jonsson

Algorithm 1 Learn a string transduction through reinforcement learning.
1: procedure Learn(T is the target transduction over the alphabets Σ and ∆, P is a set of

predefined transducer states, q0 ∈ P is a fixed initial state, threshold is the number of times the
learner needs to be correct before training ends)

2: Initialise Q-learning table tab ▷ Set all values to zero.
3: Initialise an empty set return ▷ To store the episodic rewards.
4: repeat
5: Draw (u, w) from T ▷ Generate the next training example.
6: v ← ε ▷ At first, the learner’s output is empty.
7: qt ← q0 ▷ Start from the initial state.
8: r ← 0 ▷ The total episodic reward r is initially zero.
9: for t← 1 to |u| do ▷ Until the end of the input:

10: (vt, qt+1)← argmax(v′
t
,q′

t+1)tab((u[t], qt), (v′
t, q′

t+1)) ▷ Choose action greedily, and
11: v ← vvt ▷ extend the output string.
12: if t < |u| then ▷ If the end of the input has not been reached:
13: rt+1 ← 0 ▷ withhold feedback,
14: else ▷ otherwise
15: rt+1 ← − log(lev(v, w) + 1) ▷ report distance from correct output.
16: end if
17: Update tab with rt+1 using Equation 6 ▷ Update Q-value table.
18: r ← r + rt+1 ▷ Update total reward.
19: end for
20: return.add(r)
21: until the learner has been correct for threshold episodes ▷ Termination criteria
22: Extract FST M from tab ▷ Read transition table from Q-value table.
23: return (M, r) ▷ Return inferred FST and total reward.
24: end procedure

been reached. The learning algorithm is outlined in Algorithm 1. The user-defined
parameters are – in addition to a corpus of samples of the target transduction T – a
state set P , an initial state q0 ∈ P , and a natural number threshold indicating how
many times in a row the learner needs to be correct before it can be considered to have
learnt the transduction. At the start of each episode, we randomly sample an input-
output string pair (u, w) from the target corpus. The symbols of the input string are
provided one at a time to the learner, which starts in the transducer state q0. At each
time step, it makes a greedy choice of what symbol to output and what transition
to move to based on the current input symbol and transducer state; it does this
by consulting the Q-value table. If an epsilon-greedy approach is used, the learner
sometimes chooses an action at random instead. However, in this first example we
let ϵ = 0, so there is no non-greedy exploration. Once the entire input string has
been consumed, it is rewarded in relation to the edit distance between its generated
output and the target output. The reward is used to update the estimations in the
Q-value table, whereupon the training enters the next episode.

In the case of c-tail, we trained the learner for 30 000 episodes without exploration
(i.e., with ϵ = 0), to teach it that when the symbol c is encountered, the rest of
the input should be rewritten to c:s. The learner was limited to choosing a string
in {a, b, c, ε}, and the available transducer states were P = {q0, q1}. Figure 3(a)
shows the averaged total (episodic) return per 3 000 episodes acquired by the learner
during training. Specifically, an episodic return closer to 0 means that the learner’s

Reinforcement learning of FSTs 13

(a) c-tail episodic return

(b) c-tail heat map

Figure 3: Learning outcomes for c-tail. (a) The episodic returns obtained during
30 000 episodes while training on the c-tail transduction. The returns are averaged
by 3 000 episodes. (b) The heat map of the Q-value table after training on c-tail
for 30 000 episodes. The rows are indexed by environment states, and the columns by
available actions. The lighter the colour, the greater the learner’s estimation of taking
an action in a particular environment state.

14 J. Björklund, J. Cai and A. Jonsson

Figure 4: The episodic returns obtained by the learner when training on the transduc-
tions identity, b-to-a, remove-b, and reverse. For all transductions but reverse,
the learner quickly identifies the target transduction.

output is close to the target string. Figure 3(b) shows a heat map of the Q-value
table after training. It contains the learner’s estimated values of taking different
actions in different states. If the target transduction M ′ has been correctly inferred,
then the heat map corresponds to a transition table for an FST M representing the
transduction (under the semantics of Equation 1). In other words, M(w) = M ′(w)
for every string w over the input alphabet. In the table of Figure 3(b), we can for
example see that when the FST is in state q0 and receives an a, it outputs an a and
stays in the same state (as this cell has the greatest value, indicated with the lightest
colour). However, if it is in state q0 and sees a c, it instead transitions to the state q1
(and outputs a c). Finally, we note that once it is in state q1, it always stays in q1
and outputs c:s, no matter what the input is. In other words, it has learnt c-tail.

4.3. Learning string transductions

Let us now see how the learner behaves on a more varied set of inference tasks. To this
end, we set it to learn the following transductions: identity, b-to-a, remove-b,
and reverse. Each learning problem involved 200 training episodes. Excepting the
smaller number of training episodes N , the remaining parameters are as reported in
Section 4.2. Figure 4 shows the learner’s performances during the training. As we can
see, the learner quickly completes the first three learning tasks, converging to acquire
the maximum reward of 0.

It is not surprising that the learner struggles to understand the reverse trans-
ducer: The rewards are intended to reveal the relation between an action and the
observed state, providing a scalar assessment that helps the learner to make optimal
choices. However, in the reverse task, determining the correct action at a specific

Reinforcement learning of FSTs 15

Figure 5: The episodic returns obtained when training on the transductions b-to-a and
remove-b using different reward definitions. The labels “lastR” and “everyR” indicate
that a reward is computed at the last time step and at every time step, respectively.
The step size refers to the learning rate of the algorithm.

time step becomes impossible, because there is not enough information in the observed
states to predict and hence leverage the rewards. To accurately learn reverse, one
may try a learning algorithm that in addition to outputting symbols and shifting
states can also take the actions of pushing or popping symbols on a stack, but this
falls outside the scope of the current investigation.

4.4. Reward definition

The choice of reward function is central to reinforcement learning, and key to a
successful algorithmic framework. In this section, we report on experiments to assess
the learner’s performance using two natural ways of providing the reward. In the first
scenario, the learner receives 0 at each time step but gets the entire reward at the end
of an episode, at which point it is computed as the edit difference between the complete
learner-generated and target strings. In the second scenario, a partial reward is given
at each time step, computed as the edit distance between the output string generated
for the prefix u′ of the input string consumed so far, and the output string produced
by an FST for the target transduction T on u′. With both definitions, the learner’s
action influences the accumulated reward, but the learning happens at different paces
and with varying degrees of stability. When the reward is only computed at the end,
the progress is slower but also more stable. Conversely, when a reward is computed at
each time step, the learner constantly “reflects” on its previous actions and trajectory.
Here, the feedback gained from each action has a direct impact on the subsequent
time steps and offers valuable insights into the structure of the target transduction.
This generally increases the pace of the learning process, but it is questionable how
realistic such a reward protocol would be in practice.

16 J. Björklund, J. Cai and A. Jonsson

Figure 6: The episodic returns obtained by the learner when training on the transduc-
tion abc using suffixes of varying lengths.

We compare the learner’s performances using the two reward definitions outlined
above. As our target transductions, we take b-to-a and remove-b. Figure 5 shows
the performances under the alternative rewards in 200 training episodes. We start
with an already high learning rate of 0.15 to underline the differences between the two
reward definitions. Here, it is clear that the learner infers the b-to-a transduction
faster if it is rewarded at every time step. However, for the remove-b task, the more
frequent rewards actually prevent the learner from optimising its policy within the
allotted 200 episodes. This we believe is because the target strings do not explicitly
represent the “missing b:s”, which makes them more difficult targets and can mislead
the learner. Although the learner still has access to the complete target string at
the end of the episode, the misconceptions it has picked up along the way are time-
consuming to correct. Similarly, when doubling the learning rate, the speed of learning
the b-to-a transduction with rewards at every time step becomes slower than when
rewards are computed only at the last time step. Also this, we believe, is explained
by the extra work needed to correct erroneous updates of the Q-value table, made
based on incomplete information in the early stages of an episode.

In short, while frequent rewards encourage a continuous strategy revision which
may speed up learning, it may also have the opposite effect, because it makes the
learning process more volatile. As we have seen, in some cases too frequent rewards
can even prevent the learner from converging to the correct solution.

4.5. Environment states

Another important decision is what information to include in the environment states.
In the experiments that we have looked at until now, we use a fixed set of transducer
states provided by the user. However, this approach has its drawbacks: It either

Reinforcement learning of FSTs 17

Algorithm 2 Find and split transducer states with low predictive value.
1: procedure Split(P is a set of states, tab is a Q-value table, A is the action space, visits is a

table storing the number of visits for each table cell in tab)
2: q ← argminq′∈P Entropy(q′, visits) ▷ Split the least predictive transducer state
3: return SplitState(q, tab, A, visits)
4: end procedure
5: procedure Entropy(q, visits) ▷ Compute the predictive value of each transducer state
6: val← 0
7: vis← 0
8: for every cell ((u, w, q′), (α, q)) in tab do
9: val← val + tab((u, w, q′), (α, q)) · visits((u, w, q′), (α, q))

10: vis← vis + visits((u, w, q′), (α, q))
11: end for
12: return val/vis
13: end procedure
14: procedure SplitState(q, tab, A, visits) ▷ Split a transducer state into two
15: Create a new state qnew

16: for every cell ((u, w, q′), (α, q)) in tab do ▷ Update the Q-value table accordingly
17: val ← tab((u, w, q′), (α, q))
18: vis ← visits((u, w, q′), (α, q))//2
19: visits(((u, w, q′), (α, q)))← vis
20: tab.add(((u, w, q′), (α, qnew)), val)
21: visits.add(((u, w, q′), (α, qnew)), vis)
22: A.add((α, qnew))
23: end for
24: return tab, A
25: end procedure

assumes the availability of a key property of the unknown transduction before the
learning process commences, or it requires us to make an educated guess regarding
the suitable number of states – posing negative consequences if our estimation is im-
precise in either direction. An alternative approach is to use a fixed-size embedding of
the input strings, so that the learner does not need to depend on transducer states for
memory. For this to work, the embedding needs to capture every aspect of the string
that is needed for the learner to choose the correct action. In computer vision and
natural language processing, this approach has proved extremely successful. This may
be attributed to the fact that humans often possess an abstract, symbolic understand-
ing of images and language. Consequently, much of the data can be considered noise
and omitted from the representation without adversely affecting the performance of
the machine learning model. However, the situation is different in formal language
theory, where any property of a string, in principle, is as likely as another to be the
target for grammatical inference.

For the above-mentioned reasons, embeddings are only meaningful in the present
setting if we take the target class of transductions into consideration. A possible
embedding for transductions whose domain is a locally testable language [32] is to
represent the portion of the input string currently being rewritten by a finite-length
suffix. In other words, while the learner is iterating over the input, it can remember
the last n symbols seen, but no more. To illustrate the idea, we applied the learner to
the transduction abc (see Table 1 for details), using suffixes of length n ∈ {1, . . . , 4}
as environment states, and output symbols as actions. On the one hand, this robbed

18 J. Björklund, J. Cai and A. Jonsson

Algorithm 3 Learn a string transduction through RL with state-splitting.
1: procedure Optimisation(ϵ is the fraction of the times the learner should explore, that is,

choose an action at random, number_of _episodes is the number of episodes to run, r is the
total episodic reward.)

2: Initialise non-explored returns set CleanReturn
3: split ← F alse
4: explore ← F alse
5: for i← 0 to number_of _episodes do
6: explore ← (Random(0, 1) < ϵ)
7: if not explore then
8: CleanReturn.add(r)
9: end if

10: if split then
11: tab, A← Split(P, tab, A)
12: split← F alse
13: end if
14: if i = CheckRules then:
15: SumCleanReturn ← 0
16: for j ← 0 to 100 do
17: SumCleanReturn ← SumCleanReturn + CleanReturn|CleanReturn|−j
18: end for
19: if SumCleanReturn > −0.01 then
20: break
21: end if
22: var1 ← the variance of the values in CleanReturn[−2000 :]
23: var2 ← the variance of the values in CleanReturn[−4000 : −2000]
24: norma_delta_var ← (|var2 − var1 |)/(var2 + var1)
25: split ← (norm_delta_var < 0.001)
26: end if
27: end for
28: end procedure

the learner of the ability to choose the next environment state, but on the other, it
ensured that the learner always had complete information about to n most recently
encountered symbols of the input string.

We ran 300 000 episodes for each experiment, with a learning rate of 0.001. Since
this particular transduction makes it easy to compute helpful immediate rewards (one
simply uses the same length of the suffixes from the generated string and the target
string), we reward the learner after each time step, as discussed in Section 4.4. This
speeds up the learning process and underlines differences in performance. Figure 6
shows the performance of the learner learning the abc transduction with varying-
length suffixes. As we can see, the learner is unable to infer the target transduction
when it is given a suffix of length two or shorter. It still manages to obtain a fairly
high average reward by simply replicating the input string to the output. However,
with a suffix of length three it learns to faithfully represent abc and obtain the full
reward. The learner also achieves this with a suffix of length four, but convergence
to the correct transduction takes longer.

Although string embeddings are helpful when we know what properties of the input
strings are worth preserving, this cannot be the case in general. Moreover, even when
we as in the case of locally testable languages know that it is enough to look at a suffix
of the input, the number of environment states will be exponential in the length of

Reinforcement learning of FSTs 19

Figure 7: The average (non-exploring) episodic returns obtained by the learner with
state splitting when trained on the transduction 3-count.

these suffixes. For these reasons, we now turn to a more dynamic means of providing
the learning algorithm with memory.

4.6. Adding transducer states

Let us recall that if the learner has too few transducer states to work with, then it
will fail to infer the target transduction and hence receive a non-optimal reward. In
this section, we present a technique that allows the learner to detect when the number
of transducer state hinders progress. In such cases, the learner selects a transducer
state for which there seems to be no suitable action and divides it into two. The
underlying idea is that if there is not a good choice of action, then it is likely because
the state is reached by strings that represent different syntactic classes with respect
to the target transduction, so there is not one appropriate way forward. By splitting
the state, it becomes possible for the learner to better separate between these classes.
This use of state-splitting is influenced by Petrov et al. who extended an algorithm
for grammatical inference of context-free grammars [13] to alternately split and merge
nonterminals to maximise the likelihood of the target corpus [23]. These ideas were
later formalised by Dietze [5] into an algorithmic framework for supervised learning
of weighted tree automata, i.e., a generalisation of finite-state string automata.

The algorithm is outlined in Algorithm 2 and Algorithm 3. The first of these
defines a procedure Split which in turn calls a procedure Entropy. The purpose
of Entropy is to find a transducer state that has been frequently visited by the

20 J. Björklund, J. Cai and A. Jonsson

(a) Final Q-value heat map for 3-count

(b) Final visit heat map for 3-count

Figure 8: The heat map for learning the 3-count transduction. The rows are indexed
by environment states, and the columns by possible actions. (a) Q-value heat map:
the lighter the colour, the greater the learner’s estimated value of taking an action in
a particular environment state. (b) Visit heat map: the lighter the colour, the more
frequently the learner has taken an action in a particular environment state.

Reinforcement learning of FSTs 21

algorithm, but for which the values of all actions according to the Q-value table
are still low. Once such a state has been picked, the learner calls the procedure
SplitState to divide the state into two. The cells in the Q-value table stemming
from the split state inherit the values of the split cells, and are considered to have
been visited half as often as their parent cells. If we had set the visits to zero, then
the new states would be essentially immune to future splitting, but if we had kept the
full number of visits, then they might be split immediately again.

Let us now proceed to the main algorithm, that is, to Optimisation (see Algo-
rithm 3). This algorithm is similar to Algorithm 1, with a number of small changes.
The first is that the algorithm keeps track of the variance of the reward received, and
if this stagnates, then it splits a state into two. The idea is that when the variance
ceases to change, then this is either because the correct transduction has been in-
ferred (in which case the algorithm halts), or because the state space has been fully
explored and there still has been no break-through. At the outset, the algorithm is
given a single transducer state to work with, which is sufficient for the first three
transductions of Table 1, but not the rest. The second change is that the algorithm
now uses exploration, where an ϵ fraction of the time chooses an action at random.
For this reason, the algorithm also uses a set of variables labelled “clean” to be able
to track the reward obtained in those cases where it acts purely greedy, and bases its
decision on whether the target transduction has been acquired on these.

To evaluate this approach, we let the learner to infer the transduction 3-count.
The exploration rate is set to ϵ = 0.0001 and the learning rate to α = 0.001. We ran
1 000 000 episodes: Figures 7 and 8 show the averaged clean episodic return during the
training and the final Q table. The learner split states at episode 23 000 and 662 000,
and terminated at 984 000 episodes. Looking at the heat map in Figure 8, we can
see that the learner has discovered a valid transition table for an FST representing
3-count: If the FST it reads an input symbol in state q0, then it outputs the same
symbol and moves to q2. The case is similar for q2, but the move is now to q1. If
the FST is in q1 and reads a symbol, then it moves back to q0 and outputs a c.
This completes the loop and yields a correct representation of 3-count. It is worth
remarking that the order in which the states appear in the loop (q0, q2, q1) does not
match the order in which they were created (q0, q1, q2), and no such correspondence
can be expected in general.

Figure 8(b) shows the number of times the learner has visited each state-action
combination. Due to the exploration, there is some noise in the table, but for each
environment state, the actions that are rated the highest are generally also those that
are visited the most often. However, we also see an influence of when the transducer
states were created: Initially, the learner only had the transducer state q0 to work
with, so this created a looping behaviour that is still visible in the final table. That
is, when in state q0, the learner has frequently returned to the same state and simply
copied its input symbol to the output. This was clearly a good strategy while the
learner had too few states to capture the full cyclic behaviour of 3-count, as it meant
that 2 out of 3 symbols in the output string were correct. However, as more states
were added, exploration allowed the learner to shift over to the correct cycle length
and settle on the target transduction.

22 J. Björklund, J. Cai and A. Jonsson

Figure 9: The episodic returns obtained by the learner in the dynamic environment.
The target transduction is initially 2-count, but at episode 70 000, it is replaced by
the transduction 3-count.

4.7. Performance in a dynamic environment

To conclude the experimental section, we examine the behaviour of the state-splitting
learner in a dynamic environment. For this purpose, we train it on the n-count
transduction for 100 000 episodes, where the value of n changes during training. To
speed up convergence, we use a unary input alphabet which means that the Q-table
will remain fairly small. We choose a learning rate of α = 0.001 and combine this
with two different exploration rates, namely ϵ = 0.01 and ϵ = 0. Figure 9 illustrates
the comparison of episodic returns with and without exploration. Let us first consider
the case where it uses exploration, that is, when ϵ is non-zero. Initially, the value of n
is two. As the learner begins with a single state, it decides around episode 22 000
that it lacks sufficient states and chooses to split one. Since it now has sufficiently
many states, it quickly converges to the correct solution. It does not reach 0 in the
plot because for more precise comparisons, we average every 1 000 episodic returns
including the explored ones. The learner then continues at the theoretical optimal
reward level, until the value of n changes to 3 at episode 70 000. The learner begins to
struggle again and decides around episode 86 000 that another state is necessary. After
this, the learner regains its footing and uses its three transducer states to accurately
represent 3-count, after which it terminates.

In the case where the learner does not explore, it fails to learn the target transduc-
tion. This is because it takes much longer to understand how to act in a particular
transducer state, and its incapability to detect the environment’s new changes thus
makes the learning even slower. This is visible in the heat maps of Figures 10(a) and
Figure 10(b) which represent the heat maps for the final Q-value table without and
with exploration, respectively. The former only makes full use of the initial state q0,
while the latter in addition makes use of states q1 and q2.

Reinforcement learning of FSTs 23

(a) n-count without exploration. (b) n-count with exploration.

Figure 10: The heat map of the Q-value table for learning dynamic transductions. The
rows are indexed by environment states, and the columns by possible actions. The
lighter the colour, the higher the value. (a) Q-value table for learning dynamic trans-
ductions without exploration. (b) Q-value table for learning dynamic transductions
with exploration.

The reader may have noticed that our approach incorporates state splitting but
lacks state merging. Consequently, if the learner initially sets out to learn a complex
transduction that is later replaced by a simpler one, it may end up with an excess
of states. While this might slow down continued learning, it does not hinder the
learner from adapting to the new transduction, since it can choose not to use some

24 J. Björklund, J. Cai and A. Jonsson

of its transducer states. For future research, it would be interesting to explore the
possibility of identifying under-utilised transducer states on the fly, and if they exist,
merging them. This way, the learner could maintain sufficiently many states to make
progress without being held back by a needlessly complex state space.

5. Conclusion and future work

We have presented an RL algorithm based on Q-learning for learning string-to-string
transductions. We then explored different methods of representing information about
the input strings during inference: using a fixed set of states, working with suffixes,
and allowing the learner to add new states when the learning process stagnates.
Among these approaches, the last one seems most reasonable for real-world settings,
as it requires no a priori information about the target transduction and can, in
principle, accommodate any transduction that can be represented by an FST. We
have also demonstrated the effectiveness of this approach in dynamic environments
where the target transduction changes during inference, and shown that the learner
can make progress even when having to wait until the end of each episode to receive
non-trivial feedback on its actions.

Despite these efforts, we have only scratched the surface of the intersection of
transduction inference and RL. As noted in Section 2, we have restricted ourselves
to transducers with bounded size increase, that is, we do not allow the transducer
to output symbols without also consuming an input symbol. This makes it easier
for the learner to align the input and output strings, but it also means that a large
and interesting class of transductions is not supported. Future work should therefore
look at ways of removing this restriction without sacrificing too much computational
efficiency. A potential solution is to adopt curriculum learning [27], where the learner
is provided with increasingly more complex input strings to rewrite.

Another natural generalisation is to explore RL of probabilistic FSTs, where a
normalisation step is added to turn the columns of the Q-value table into probability
distributions over the available actions. A challenge here is that for every input
string, there is no longer a single output that is correct, but rather a distribution
over outputs. It is not clear how a reward based on the Levenshtein distance could be
generalised to such a setting. However, one possible way forward is to allow the learner
to compute, for every input string, a compact representation of a distribution over
matching output strings, and then use Kullback–Leibler divergence [10] to provide a
reward that is inversely proportional the difference between the learner’s distribution
and the target distribution. Also this is however not straightforward, as even in the
case for relabellings this would mean summing over finite but potentially exponentially
large sets (in relation to the size of the input), so some kind of approximation technique
would be necessary.

It also remains to restrict the framework to transductions that compute the identity
function on a regular subset of their input domain, in other words, to finite-state au-
tomata, since this would allow for benchmarking against other statistical and symbolic
inference methods. This would however require that the datasets used for evaluation
are sufficiently large, so that RL can be simulated through repeated sampling.

Reinforcement learning of FSTs 25

Let us now return to the active-learning algorithm by Akram et al. [1] discussed
in the introduction. Recall that that algorithm realises exact learning by collecting
a characteristic set for (an FST for) the target transduction. Provided that some
assumptions are made about the distribution of input strings, the learning setting
proposed here could accommodate a statistical version of this algorithm, because
the likelihood of the learner being exposed to a characteristic sample would increase
over time. Furthermore, the EXP queries could be approximated by counting the
frequencies of relevant prefixes in the data. We leave an empirical comparison between
such an approximated version of Akram et al.’s algorithm and the Q-learning approach
as a topic for future work. However, to truly support exact learning and guarantee
that the learner converges to a canonical representation of the target transduction, one
must alter the learning setting itself. Again, one could build on the work by Akram
et al. but allow the learner to choose what input strings it is given, and then devise
a strategy that allows it to collect a characteristic set for the target transduction.

Finally, in the realm of reinforcement learning, there is previous work on multi-
agent systems, where the learning algorithms are represented by finite state automata
and learn individually but are penalised collectively after each action is taken [20]. It
is found that when the reward function permits so-called Nash equilibria [21], then
the set of learners will converge to one of these. This suggests an interesting line of
future research, namely learning complex transduction obtained through compositions
of simpler functions.

Acknowledgements

We are grateful to the reviewers for their time and effort. Their feedback was im-
mensely valuable for improving the manuscript. Additionally, we would like to express
our gratitude to Martin Berglund for his literature recommendations on string em-
beddings, and to Yikun Hou for providing suggestions on optimisation.

Finally, we would like to express our gratitude to Henning Fernau for his invaluable
contributions to the research community, as well as for the kindness and encourage-
ment he has extended to Björklund throughout her research career. Fernau’s combi-
nation of a sharp intellect with a warm heart and generous nature makes him a role
model to look up to.

References

[1] H. I. Akram, C. La Higuera, C. Eckert, Actively learning probabilistic subse-
quential transducers. In: J. Heinz, C. Higuera, T. Oates (eds.), Proceedings of the
Eleventh International Conference on Grammatical Inference. Proceedings of Machine
Learning Research 21, PMLR, University of Maryland, College Park, MD, USA, 2012,
19–33.

[2] R. Bellman, A Markovian decision process. Indiana University Mathematics Journal
6 (1957), 679–684.

[3] J. Berstel, Transductions and context-free languages. Teubner Studienbücher: Infor-
matik 38, Teubner, 1979.

26 J. Björklund, J. Cai and A. Jonsson

[4] J. Carme, R. Gilleron, A. Lemay, J. Niehren, Interactive learning of node selecting
tree transducer. Machine Learning 66 (2007), 33–67.

[5] T. Dietze, A Formal View on Training of Weighted Tree Automata by Likelihood-
driven State Splitting and Merging. Ph.D. thesis, Technische Universität Dresden, 2004.

[6] S. Eilenberg, Automata, Languages, and Machines. Number pt. 2 in Automata, Lan-
guages, and Machines, Academic Press, 1974.

[7] J. Eisner, Expectation semirings: Flexible EM for learning finite-state transducers.
In: Proceedings of the ESSLLI Workshop on Finite-State Methods in NLP Helsinki.
2001, 1–5.

[8] R. Eyraud, S. Ayache, Distillation of weighted automata from recurrent neural net-
works using a spectral approach. Machine Learning (2021), 1–34.

[9] W. Foland, J. H. Martin, Abstract meaning representation parsing using LSTM
recurrent neural networks. In: R. Barzilay, M.-Y. Kan (eds.), Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). ACL, 2017, 463–472.

[10] H. Jeffreys, The Theory of Probability. Third edition, Oxford University Press, 1961.
[11] S. Jiampojamarn, C. Cherry, G. Kondrak, Integrating joint n-gram features into

a discriminative training framework. In: R. Kaplan, J. Burstein, M. Harper,
G. Penn (eds.), North American Chapter of the Association for Computational Lin-
guistics. ACL, 2010, 697–700.

[12] L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement learning: A survey.
Journal of Artificial Intelligence Research 4 (1996) 1, 237–285.

[13] D. Klein, C. D. Manning, Accurate unlexicalized parsing. In: Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics. ACL, Sapporo,
Japan, 2003, 423–430.

[14] W. Kuich, A. Salomaa (eds.), Semirings, Automata, Languages. Springer-Verlag,
Berlin, Heidelberg, 1985.

[15] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions, and re-
versals. Soviet physics. Doklady 10 (1965), 707–710.

[16] W. Martens, J. Niehren, On the minimization of XML schemas and tree automata
for unranked trees. Journal of Computer and System Sciences 73 (2007) 4, 550–583.
Special Issue: Database Theory 2005.

[17] G. Nicolai, S. Najafi, G. Kondrak, String transduction with target language mod-
els and insertion handling. In: S. Kuebler, G. Nicolai (eds.), Proceedings of the
15th Workshop on Computational Research in Phonetics, Phonology, and Morphology.
Association for Computational Linguistics, Brussels, Belgium, 2018, 43–53.

[18] J. Nivre, Incremental non-projective dependency parsing. In: C. Sidner, T. Schultz,
M. Stone, C. Zhai (eds.), Human Language Technologies 2007: The Conference of the
North American Chapter of the Association for Computational Linguistics; Proceedings
of the Main Conference. ACL, 2007, 396–403.

[19] J. Nivre, Algorithms for deterministic incremental dependency parsing. Computational
Linguistics 34 (2008) 4, 513–553.

[20] A. Nowé, K. Verbeeck, M. Peeters, Learning automata as a basis for multi agent
reinforcement learning. In: K. Tuyls, P. J. Hoen, K. Verbeeck, S. Sen (eds.),

Reinforcement learning of FSTs 27

Learning and Adaption in Multi-Agent Systems. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006, 71–85.

[21] M. J. Osborne, A. Rubinstein, A course in game theory. The MIT Press, Cambridge,
USA, 1994. Electronic edition.

[22] D. Perrin, Finite automata. In: J. van Leeuwen (ed.), Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics. Elsevier and MIT Press,
1990, 1–57.

[23] S. Petrov, L. Barrett, R. Thibaux, D. Klein, Learning accurate, compact, and
interpretable tree annotation. In: N. Calzolari, C. Cardie, P. Isabelle (eds.),
Proceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics. ACL, 2006,
433–440.

[24] M. Riley, C. Allauzen, M. Jansche, OpenFST: An open-source, weighted finite-
state transducer library and its applications to speech and language. In: M. Osten-
dorf, M. Collins, D. W. O. Shri Narayanan, L. Vanderwende (eds.), Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, Companion Volume:
Tutorial Abstracts. ACL, Boulder, Colorado, 2009, 9–10.

[25] A. Salomaa, M. Soittola, Automata-theoretic Aspects of Formal Power Series. Texts
and monographs in computer science, Springer-Verlag, 1978.

[26] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. P. Lillicrap, F. Hui,
L. Sifre, G. van den Driessche, T. Graepel, D. Hassabis, Mastering the game of
go without human knowledge. Nature 550 (2017) 7676, 354–359.

[27] P. Soviany, R. T. Ionescu, P. Rota, N. Sebe, Curriculum learning: A survey.
International Journal of Computer Vision 130 (2022) 6, 1526–1565.

[28] A. T. Suresh, B. Roark, M. Riley, V. Schogol, Distilling weighted finite automata
from arbitrary probabilistic models. In: H. Vogler, A. Maletti (eds.), Proceedings
of the 14th International Conference on Finite-State Methods and Natural Language
Processing. 2019, 87–97.

[29] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction. Second edi-
tion, The MIT Press, 2018.

[30] C. Wang, N. Xue, Getting the most out of AMR parsing. In: M. Palmer, R. Hwa,
S. Riedel (eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, Copenhagen, Den-
mark, 2017, 1257–1268.

[31] C. J. C. H. Watkins, P. Dayan, Q-learning. Machine learning 8 (1992), 279–292.
[32] Y. Zalcstein, Locally testable languages. Journal of Computer and System Sciences

6 (1972) 2, 151–167.
[33] S. Zhang, X. Ma, K. Duh, B. Van Durme, AMR parsing as sequence-to-graph

transduction. In: A. Korhonen, D. Traum, L. Màrquez (eds.), Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. ACL, 2019,
80–94.

	1 Introduction
	1.1 Related work
	1.2 Outline

	2 Preliminaries
	3 Reinforcement learning
	3.1 Q-learning

	4 Experiments
	4.1 Data sets
	4.2 Experimental setup
	4.3 Learning string transductions
	4.4 Reward definition
	4.5 Environment states
	4.6 Adding transducer states
	4.7 Performance in a dynamic environment

	5 Conclusion and future work

